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Abstract. A modified three-dimensional mean spherical model with-Eyer film geometry

under Neumann—Neumann boundary conditions is considered. Two spherical fields are present
in the model: a surface one fixes the mean square value of the spins at the boundaries at some
p > 0, and a bulk one imposes the standard spherical constraint (the mean square value of the
spins in the bulk equals 1). The surface susceptibjlity has been evaluated exactly. Foe 1

we find thatyy 1 is finite at the bulk critical temperaturg., in contrast to the recently derived
value ofy; 1 = 1 in the case of just one global spherical constraint. The regult= 1 is only
recovered ifp = p. = 2 — (12K.)~1, whereK, is the dimensionless critical coupling. When

p > pe, x11 diverges exponentially a8 — 7.©. An effective Hamiltonian is also proposed
which leads to an exactly solvable model wjths = 2, the value for the: — oo limit of the
corresponding Q:) model.

1. Introduction

Recently [1] (hereafter referred to as 1) the finite-size scaling behaviour of a three-
dimensional system with a film geometkyx co? was investigated within the mean spherical
model with Neumann—Neumann and Neumann-Dirichlet boundary conditions and surface
fields 41 and h, acting at the boundaries. The obtained results imply the well known
exponentA§ = % for the ordinary surface phase transition at a Dirichlet boundary, and the
emergence of a new critical exponeislib = g characterizing the Neumann boundary (for

a general review on surface critical phenomena see, for example [2—4], and for finite-size
scaling [2,5-7]). The conjecture has been made that the latter critical exponent corresponds
to the special (surface-bulk) phase transition within the model. The last is in consistence
with the general expectation for the finite-size scaling form of the free energy for this type
of phase transitions if one assumes that the crossover expdnend, as it is for three-
dimensional @) models [2]. It has also been derived that the critical exponent of the local
surface susceptibility 1 is yfti = 1. The same result is known to hold for the spherical
model with enhanced surface couplings under Dirichlet—Dirichlet boundary conditions [8].
Unfortunately, in the latter case the model quite unphysically predicts that the surface orders
for a sufficiently large enhancement at some temperature above the bulk critical one even for
d = 3. This is no more the case in the model improved by introducing a second spherical
constraint on the spins at the boundaries [9], since the only critical point that remains for
d < 3 is the bulk one. Then fod = 3 the exponeny,’; = —1 corresponds to an ordinary
phase transition [2,10]. In | the case of equal bulk and surface couplings was considered
and the question of if and how the surface behaviour of the system with Neumann—Neumann
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boundary conditions will change under additional spherical constraints on the spins at and
near the surfaces was left open. One of the aims of this paper is to contribute to clarifying
that point. To this end we consider the critical behaviour of the local surface susceptibility

x11(T; p) = L'Enoo[—Lasz(T, ha, his 0)/3h2)hen, o (1.1)

in the case when the mean square value of the spins at the boundaries is fixed at some positive
numberp by an additional spherical constraint. The model defined in this way will be called
the modified spherical model. In equation (1.1) and in the remaindeiT, h1, hr; p)
denotes the free-energy density (gl and per spin) of a three-dimensional hypercubic
lattice system with a film geometiy x co? at temperatur@. Neumann—Neumann boundary
conditions are imposed across the finite dimension of extenSurface fieldsi; and i,
are supposed to act at the surfaces bounding the system. Since we are interested in the
caseh; = hr, only one additional constraint on the boundary spins is imposed. It turns out
that the behaviour ok 1 in the vicinity of the bulk critical pointZ, depends crucially on
o . It will be shown that only ifp = p, := 2 — (12K,)~! = 1.34053... one obtains the
previously found value, ; = yf’i =1 If p < p. thenxy 1 has the singularity characteristic
of the spherical model with Dirichlet boundary conditions, ;8.1 = y7; = —1. When
0 > pe, x1.1 diverges exponentially a6 — T, which reminds us of the behaviour of a
two-dimensional @), n > 2, model close t&@ = 0. The calculation of the mean square
value p, of the spins at a Neumann boundary in the standard spherical model elucidates the
appearance of the critical value pf= p,: it turns out thato. = p,. Moreover, we note that
the second spherical field, to be denotedvhfgee equation (2.1) below), can be considered
as a free parameter. It will be shown that by changing it one interpolates continuously
from Neumann, via mixed, to Dirichlet boundary conditions. Following I, under Neumann
boundary conditions we mean here the case when the interaction of the finite system with
the ‘environment’ is modelled by letting the spins surrounding the system take the same
values as their nearest neighbour inside the system. Under Dirichlet boundary conditions
this interaction is modelled by fixing the spin configuration outside the system to zero
value. (For a precise mathematical definition of the boundary conditions see I.) The mixed
boundary conditions then correspond to the situation when the spins surrounding the system
are set to take values proportional (but not equal) to those of their nearest neighbour inside
the system. Obviously, the above terminology is justified by analogy with the continuum
limit. Note that for anyv, just due to the symmetry which arises from the identical boundary
conditions and fieldsihi = h;) at the opposite surfaces, the system models by itself an
analogue of a Neumann boundary at the middle layers. Therefore, if one considers the local
surface succeptibility; ; for thelth layer, one would expect to obtain the critical exponent
for the Neumann boundary;; = 1, for [ around the middle of the system. The last is
obviously true even if the system is with otherwise Dirichlet boundary conditions. Finally,
it will be shown that ifv is a given function of the temperature, one obtajﬁ% = 2, which
is the corresponding value for the() model in the limitn — oo. '

As is well known, the infinite translational-invariant spherical model is equivalent to the
n — oo limit of a similar system of: -component vectors [11, 12]. However, the spherical
model with surfaces (or, more generally, without translation-invariant symmetry) is in fact
not such a limit [13] (for the results available for the spherical model see, for example
[2,5-7] and references therein). In other words, the spherical model under nonperiodic
boundary conditions is not in the same surface universality class as the corresponding O
model in the limitn — oo, in contrast to the bulk universality classes. The last becomes
apparent when one investigates surface phase transitions foizann@del in the limit
n — oo. In that case one obtains [, = 1/(d — 2) (i.e. A1 =1 for d = 3) for ordinary
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and A; = 2/(d — 2) (i.e. A; = 2 for d = 3) for special phase transitions. It is believed

that the corresponding equivalence will be recovered if one imposes spherical constraints
in a way which ensures that the mean square value of each spin of the system is the same
[13] (unfortunately such a model is rather untractable). One of the aims of this paper is
to see if, and up to what extent, the behaviour of the system with two spherical fields will
be closer to the @) model in the limitn — oo, in comparison with the standard mean
spherical model (with only one spherical field).

This paper is organized as follows. In section 2 we describe the model and present
convenient starting expressions for the mean spherical constraints, the free-energy density
and the local surface susceptibility. Our main results on the behavioyr 106nd x;; as a
function onT andp are given in section 3. The paper closes with a short discussion given
in section 4.

2. The model

We explicitly consider the three-dimensional mean spherical model with nearest-neighbour
ferromagnetic interactions on a simple cubic lattice. At each lattice-site(ry, 75, r3) € Z°

there is a random (spin) varialigr) € R and the energy of a configuration = {o (r), r €

A} in a finite domainA ¢ Z3, A = L1 x L, x L3, containing|A| sites, is given by

,BH(A”(UA|K, h,s)= —K(T: . QE\I) -0, +sa: o, + v(fsT -0y — hI -o,. (2.1)
Here the|A| x |A| interaction matrixQ("” can be written as
0 = (AY + 2E1) x (AS? + 2E5) x (ALY + 2E3) 2.2)

wherex denotes the outer product of the corresponding matri:&&s).,is theL; x L; discrete
Laplacian under boundary conditions andE; is the L; x L; unit matrix. In equation (2.1)
B = 1/kpT is the inverse temperaturdl = BJ is the dimensionless coupling constant;
h, = {h(r),r € A}, with h(r) € R, which is an external magnetic field; asdand v are
the spherical fields which are to be determined from the mean spherical constraints (see
below);a_y = {O’(’I"), T E S}, S ={(r1, ro, 1) U (ry, ra, Lg)}, ri=1...,Ly,ro=1...,Lo.
The free-energy density of the modified mean spherical model in a finite regimn
given by the Legendre transformation

BfT (K. hy: p) :=suf—|A|" N ZO (K, h,:5,v) — s — pvlS|/|A]} (2.3)
where|S| is the total number of spins at the boundarfeand
Z/(\”(K, h,;s,v) = / exp[—,BHf\”(oA K, h,;s,v)] l_[ do (r) (2.4)
RIA reA

is the partition function. The supremum is attained at the solutions of the mean spherical
constraints

(ol -0,) = Al (2.5)
and
(o] - oy) = pIS]| (2.6)

where(. - -) denotes expectation value with respect to the HamiItoﬁfbAﬁ”(aAK, h,;s).
Let us denote by-2 + ZCOS(pZ ki), k; =1,...,L;, i = 1,2, 3, the eigenvalues of the

matrix AE”'). Let us further suppose, say, periodic boundary conditions adrossd L,
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and Neumann—-Neumann boundary conditions actassThen, by direct evaluation of the
integrals in the partition function (2.4), after taking the lirhit, L, — oo at a fixedLz = L,
one obtains for the free energy

BfL (K. hyhyip) = 5log— — 6K

11 2 2 L 2
S | Y 231 - cosy;
+29wp{L8n2fo 1f0 2; ogl¢ + ;( cost))]

L ‘h“)(k- o’
L E)

ney. 1
+2[1 = cosgp (k: )] = 57 ; ¢ + 2[1 — cosg! (k; )]

k(o4 20) ). e
Here -2+ 2 cosy] (k; w), k =1,..., L are the eigenvalues of the matrix

AP (@) =AY — 011+ 60.1) (2.8)
and

h(L”’(k; w) =hu’ (1, k; ) + hpu! (L, k; w) (2.9
where{u” (r, k; w),r =1,..., L}, k=1,..., L are its eigenvectors; the superscripgtays

there for Neumann—Neumann boundary conditions. In equations (2.7)—(2.9) the following
definitions have been used

¢=s5/K—6 (2.10)

o =v/K. (2.11)
From the requirement for the existence of the partition function one has the constraint

¢+ 2k=T,i,rJL[1 — cosgj (k; w)] > 0. (2.12)

The eigenvalues and the eigenvectors of the matfif))((w) can be obtained in a way similar
to the one used in [9, 14]. The results are:
(i) for given L andw, when|1 — w| # 1, the numberg} (k; w), k =1, ..., L are the
L roots of the equations
Al
1= 2Dl (2.13)
sin3(L — 1]
and
1
1—w= w (2.14)
cosf3 (L — 1g]

with 0 < Re(¢) < 7 and Im(p) > 0. For concreteness and simplification of the notations
below, without loss of generality in the final results, we assum® be an odd integer.
Then, it is easy to see that equation (2.13) possedsesl)/2 solutions of the specified
type, whereas equation (2.14) gives the remairihgt 1)/2 solutions. From (2.13) and
(2.14) one obtains that (for fixed and k)

dp 1 2sing

do L(1l-w)?2—-21—w)cosp+1+ L1l —(1-w)?]
Further, if |1 — w| < 1 all the L roots are real. In that case there is only one root of
equation (2.13) per interval2rk/(L — 1),2x(k + 1)/(L — 1)), k = O,..., (L — 3)/2.

(2.15)
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Similarly, equation (2.14) only has one root per interval2x — 1)/(L — 1), 7 (2k +
1H/(L-1),k=1...,(L—3)/2, and one root in each of the interval®, =/(L — 1))
and(r — /(L — 1), ). Let us now consider the cask— w| > 1. Then, ifo < 0, one
again only has one root of equation (2.13) per intex2alk /(L — 1), 2z (k + 1) /(L — 1)),
k=1...,(L—3))/2, and, similarly, one root of equation (2.14) per inter¢al2k —
H/(L-1),7n(2k+1)/(L-1),k=1,...,(L—3)/2, and one root iir —x /(L — 1), ),
i.e. altogethell — 2 real roots in the interval0, 7). The two remaining roots are given by

9o = ilog(1— w) £ O((1 — w)~ D)y, (2.16)

(Strictly speaking the roots are only degenerate up to exponentially small corrections.) In
the casew > 2 one again ha& — 2 real roots in the interval0, =) and the remaining two
roots are then given byg = 7 +ilog(w — 1) £ O((w — 1)~ =D),

(i) The components of the eigenvectdis (, k; w),r = 1,..., L}, k =1,..., L of
the matrix A" (w) are given by the expressiofl(— w| # 1)

o e o) — \/7 sinfr¢f (k; w)] — (1 — w) sin[(r — D¢} (k; w)]
LB = A w2 - 20— w) cosg;] (k; @) + 14 L~ 1 — (1 — w)?]}V/?’

(2.17)

(iii) For completeness we also give the results for the well known ¢asew| = 1
(see, e.qg, |, [14]). Thew] (k;0) = n(k — /L, ¢} (k;2) =nk/L, k=1,...,L, and the
components of the eigenvectors afr, k; 0) = /(2 — 8;.1)/L cos[(r — 1/2)¢j (k; 0)] and
u'(r, k; 2) = 2/Lsin[(r — 3)¢} (k; 2)], respectively.

Finally, we remind ourselves that we are mainly interested in the behaviour of the local
surface susceptibility for which we obtain from equations (1.1) and (2.7)
3 luj (1, k; )2

(T p) = 5o fim 3
L) = oK 1% £ ¢+ 2[1 — cosgl (k: )]

If, instead of the local susceptibility at the surface of the system, one is interested in the
local susceptibility of théth layer, x;,(T'; p), the corresponding result reads

(2.18)

1 . & u’ (1, k; )|
xa(T:p) = 2 im ; ¢ + 2[1 — cosg” (k; )] (2.19)
The above expression can be obtained in a way analogous to the derivatjan dfy
imposing a local magnetic field, on the spins in théth layer.
To determine the behaviour of the spherical fielisand @ one has to analyse
equations (2.5) and (2.6). From (2.3), (2.7 ), (2.10), (2.11) and (2.15) one explicitly obtains
the set of equations

. 1
T 4n2

21 2 1 L 2 . -1
2K ./o do, A d@zLZ{¢+22(1—c059,~) +2[1—COS(pL(k;w)]}

k=1 i=1
(2.20)

and

1 2 2 1 L r?
2Kp = — / dog do, — 2 sirt ¢f (k; w)
47'[2 0 0 L ; .

2 -1
x {(b +2) (1- cost) + 2[1 — cosg] (k: w)] }
=

i=

x{(1—w)? =21 —w)cosgl (k;w) +1+ L1 -1 —w)?}7t. (2.21)
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These equations determine the point at which the finite-size free energy density (2.7), which
is an analytical and strictly concave functiong@fandw in the domain given by inequality
(2.12), reaches its global maximum. Clearly, in the thermodynamic limit the free-energy
density is independant of the surface spherical fieldAs is well known, for allKk > K,

its supremum sticks to the endpoipy = O of the allowed intervalpy > 0, where the

bulk free-energy density is finite. Wheki < K., the supremum is attained at a point

¢o = ¢o(K) > 0, which satisfies the limit form of equation (2.20) [17],

2K = W3(¢o) (2.22)
where

b g b4 d -1
Wa(p) = nld/O d@l---/o d@d[¢+22(1— cos@i)} (2.23)
i=1

is the d-dimensional Watson integral/,;(0) = 2K.. In general, the solutiong and w of
equations (2.20) and (2.21) can be written in the fa@rm: ¢o + Ad, w = wp + Aw, Where
A¢ and Aw tend to zero wherl. — oo, and¢y andwg are solutions of the corresponding
equations where the limit. — oo is taken.

Equations (2.16)—(2.23) provide the basis for our further analysis. Before passing to
it we note that, instead of considering as a variable that has to be determined from
equations (2.20) and (2.21), one can consider it as an additional free parameter. Then, from
equation (2.8) it is clear thab = 0 yields the standard spherical model with Neumann—
Neumann boundary conditions, whereas= 1 yields the same model under Dirichlet—
Dirichlet boundary conditions. When @ » < 1 we have mixed (or ‘intermediate’ [15])
boundary conditions which interpolate between the above two extreme cases. Therefore, in
this way one should reproduce the previously known results for the properties of the local
susceptibilities. In addition, as we shall later see, by choasitigbe a given function of the
temperature, one can define an effective spherical modelyith= 2, which corresponds
to the critical exponent for the surface-bulk phase transition within the @odel in the
limit n — oo.

3. Critical behaviour of the local susceptibilities

Here we study the critical behaviour of the local susceptibilifies and x;; for I close to
the middle of the system.
From equations (2.18) and (2.17) we obtain for the surface susceptibility

1 1 <& sir? ¢; (k; o)
T’ = — ||m — ..
x1.1(T; p) K Lo L ; ¢ + 2[1 — cosy} (k; w)]

x[1 —2(1— w)cospl (k;w) + (1 —w)* +[1 — (1 — w)?]/L]* (3.1)
where the limitL — oo in (3.1) is to be taken over the finite-size solutiansand ¢ of
equations (2.20) and (2.21). It — w| < 1, from the properties op} (k; w), k =1, ..., L,
described in section 2, it follows that ds — oo the sum in equation (3.1) tends to the
corresponding well defined integral

11 /” Sirt ¢

T:p) = — de. 3.2
x1,1(T; p) o [¢o+ 21— cosp)][1 — 2(1 — wo) cosy + (1 — wp)?] ' (3.2)

Km
The integral can be taken exactly [16] with the result
1 1

K VP0G + o) + do+ 2wp

x11(T5 p) = (3.3)
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When |1 — w| > 1 one has to take into account the contribution of the two complex
roots which turns out to be of the same order as the contribution of all other roots. The
contribution of the latted. — 2 roots is again given by the integral on the right-hand side of
equation (3.2). Performing the calculations one obtains the same analytical expression for
x1.1(T; p) as the one given by equation (3.3).

The surface spherical field, satisfies the corresponding limit form of the spherical
constraint (2.21) at fixegpp = 0 for K > K., and¢g = ¢o(K) for K < K,.. The right-hand
side of this equation can be treated in a way similar to that for (3.1). Whenw| < 1,
due to the properties of the roof (k; w), k = 1,..., L, the sum in (2.21) converges as
L — oo to the corresponding well defined integral, which can be taken exactly. Performing
this procedure, one finally obtains

2Kp = G3(¢o, wo) (3.4)

where
d—1

2 Ve T
Gd<¢,w>=ﬁ/ d91"'/ ded_1{¢>+2w+2 (1— cosf))
0 0

i=1

d—1 1/2 d—1 1/2y -1
+[¢+22(1—cos@,-)] [¢+4+ ZZ(l—cosei)} } . (3.5)

i=1 i=1
When|1—w| > 1, one has to treat the contribution from the two complex roots separately.
The contribution from thd — 2 real roots again leads to a well defined integral that can be
taken exactly. As for1 1(T; p), the final result is given by the same analytical expression
as in the cas¢l — w| < 1, i.e. equation (3.4) is actually valid for ally (the restrictions on
wo andgo stemming from the constraint (2.12) are stated below).

Let us denote by}‘;(q&, w) the branch of the functiod3(¢, w) defined forw > 0 and

by G5 (¢, w) the one forw < 0. Then, by means of identical transformations it is easy to
show that

2 _ 2
G3 (@, ) = (1—w) 2GS <¢, 1|6_0|w> _ ?1(— w‘)"z) W, (¢ _ 1:)) (3.6)

and
G (¢, ») = (1—w) [2W3(¢) — & + tpW3(®)]

o) 2 (7 T 2

w 2 1/2 2 1/2y -1
5 [¢ +2) (1- cos@i)} [4: +4+2) (1- Cos(?i)] } :

i=1 i=1

(3.7)
Finally, in the limit L — oo, constraint (2.12) for the existence of the partition function
yields the allowed domain of values of the spherical fields,
0 if wo>0
a)g/ (1 — wg) if wg<0.
From equation (3.3) it follows that the above inequalities impi% (7'; p) > 0, as it should
be expected on general physical grounds.

As it is evident from equation (3.5)73(¢, @) is a monotonically decreasing function
of w which tends to zero from above as— +oco. Due to inequalities (3.8), at = 0 we

¢o = { (3.8)
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have to consider it on the half-line > 0, where it is bounded from above by its value at
w = 0, see equation (3.7),

G3(0,0) = 4K, — : := 2K p.. (3.9

On the other hand, ip > 0, the definition domain o&3(¢, w) is restricted by (3.8) to the
half-line w > w.(¢), where

w1(§) = —(@ + ¢°/HY? — ¢/2. (3.10)
From representation (3.6) and the known expansioWgfx) asx | 0,
Wa(x) = (47) tInx~1 + O(1) (3.12)

it follows that G3(¢, w) diverges logarithmically tetoo asw | wi(¢).

Before passing to the analysis of the above equations, in order to determine the
behaviour ofx1 1(T; p), let us first consider the simpler case ©ofas a free parameter.
Then, for Neumann—Neumann boundary conditions one has (see equations (2.2) and (2.8))
o = 0, whereas one has = 1 for Dirichlet-Dirichlet boundary conditions. Thus, from
(3.3) and the well known behaviour @b in the vicinity of the bulk critical temperature
¢o ~ [87 (K. — K)]? [17], one immediately obtains all previously known results for the
critical behaviour of the local surface susceptibility [1, 10]:

(@) Neumann—Neumann boundary conditions= 0O; the result given below follows
directly from equation (3.5) in [1] fohy = h})

x11(T) = 2K) ™  {¢o/2 + [do(L + ¢o/H]") (3.12)
ie.yr1=1
(b) Dirichlet-Dirichlet boundary conditionso(= 1; see equation (61) in [10])
x11(T) = K) M1+ ¢o/2 + [¢o(1 + do/H]7?) (3.13)
i.e. Y11= -1.

For w # 0,1 one has the case of the so-called intermediate [15] boundary conditions.
As it is clear from (3.3),x1.1 diverges in the vicinity off = T, if and only if v = O, i.e.
under Neumann—Neumann boundary conditions.

Let us now comment on the critical valpg of the parametep, defined in equation (3.9).
By using a translation invariance argument, for the mean square length of the spins at the
Newmann boundary of the standard spherical model with one global sphericap faaie
obtains in zero magnetic field

(022, D) =
2KL1L,
5 i 2 Jujy (L, k3; 0)[? .
kpdode=1 @ + 22 7_4[1 —cos2mk;/L;)] 4 2[1 — coS(m (k3 — 1)/L3)]
(3.14)
In the limit of an infinite film geometry this equation yieldé{= L is kept finite)
LL'L"ZTLOO(UZ(VL r2, 1) = %[Wa(qﬁ) — &+ ¢Wa()/12+ Wa(¢)/2L]. (3.15)

Hence, at the critical poink = K. of the infinite systeml = o), by taking into account

the bulk spherical constraint @ = 0, namelyWs(0) = 2K, one obtains that the mean
square lengthp, of the spins at the Neumann boundary of the standard spherical model
equals precisely the critical valyg for the surface spins in the modified spherical model.
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Finally, we note that by taking
w=—-8r(K.—K) (3.16)

one obtains for the considered system with layer geometry and Neumann—-Neumann
boundary conditiong; ; = 2, which is the corresponding critical exponent for thé:0
models in the limit» — oo. In that casey; ; also exists, ang; ; = 1. Obviously, such a
choice ofw defines an effective Hamiltonian that leads to an exactly solvable model with
the critical exponents stated above.

Now we pass to the analysis of the behaviourx@f(T; p) given by equation (3.3)
wherewy is determined as a function & and p from equation (3.4).

3.1. Critical behaviour of the local surface susceptibility

Here we confine our analysis to the surface critical regimes that emerge on approaching
the bulk critical temperature from above, i.e. whEn= K, + AK, where AK < 0 and

|AK| — 0. Then, as it is well known, the leading asymptotic form of the bulk spherical
field follows from the asymptotic expansion

Wa(9) = 2K, — (47)'¢"? + O(¢) $10 (3.17)
and reads [10]
¢ = 64| AK|? AK 1 0. (3.18)

From expression (3.3) itis clear that the local surface susceptibility may exhibit divergent
behaviour in two different regimes: (a) wheg | 0, and (b) whenwg | wi(¢) 1+ 0. Asitis
clear from equation (3.4) and the above-mentioned properties of the fur@ti@gh ), the
first regime may only occur wheKp 1 K.p., which, in view of our assumptionK 4 0,
requiresp = p.. The second divergent regime of the local surface susceptibility takes place
at any fixedo > p.. Below we derive the leading-order asymptotic solutionsdgin each
of the two cases.

Case (a):p = p.. To obtain an asymptotic expansion@g(¢, ») in both arguments | 0

andw | 0, we notice that the integral on the right-hand side of equation (3.7) diverges at
¢ = o = 0 and the divergence arises from the integration over the neighbourhood of the
point 8; = 6, = 0. Therefore, its leading-order asymptotic behaviour is given by the small
argument expansion of the trigonometric functions which yields

G3(p, ®) = 2K p. — 21) % + (0/27) IN($*? + @) + O(¢) + O(w). (3.19)
By settingp = p., we obtain thatog | 0 obeys the asymptotic equatioA K 1 0)
—(wo/27) IN(BT|AK | + wo) = |AK|/(BK,). (3.20)

The solution which tends to zero from above|aX| — 0 is
T|AK|
Obviously, this critical regime leads ta 1 = 1.

(3.21)

wo =~ —

Case (b): p > p.. The asymptotic behaviour af3(¢, w) as¢ | 0 andw 1 0, so that
o > wi(¢), is readily obtained from the exact representation (3.6) and expansions (3.11)
and (3.19):

G5 (¢, 0) = 2K .p. — (21) 1Y% — (Jol/27) In(¢"? — |w]) + O(¢) + O(w). (3.22)
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At fixed Ap > 0 the leading-order equation for the surface spherical field becomes
—(|lwol/27) INn(B7 |AK | — |wo|) = 2K Ap. (3.23)

Assuming|wg| = 87|AK| — x, wherex = 0(|AK|), one obtains

K.Ap
~ —8r|AK| + exp| — . 3.24
on = —8rla K| +exp( 557 ) (329
Therefore, in this critical regime the local surface susceptibility diverges exponentially as
the bulk critical temperature is approached from above:

1 K.A
x1.1(T; p) = 2K exp<2|;;|> . (3.25)
This behaviour reminds us of the one of a two-dimensional system cloge=tc0. The
fact that the surface is coupled to an infinite three-dimensional system is reflected in the
replacement of" = 0 by the bulk critical temperaturg = 7.

Finally, if p < p. it is easy to see that (3.4) has a finite solutiof(p, K), where
0 < wg < 1, whenAK 4 0. The last actually follows from the inequalities

G3(0, ¢) > Wa(¢) > Gs(1, ¢). (3.26)
Thus, if p = 1 the local surface susceptibility 1(7.; 1) is finite.

3.2. Critical behaviour of the local susceptibility around the middle of the system

For the local susceptibility; ;(T; p) from (2.17) and ( 2.19) one explicitly obtains

L1 1 & (sinllg) (k)] — (L - w) SN[ — D} (k; )]}
xa(Tsp) = lim — ; ¢ + 2[1 — cosy} (k; w)]

x{1— 2(1 — w) cosg} (k; ) + (1 — w)* +[1 — (L — w)?]/L} % (3.27)

We will only be interested in the behaviour of this quantity around the middle of the system.
Let us set = (L + 1)/2. Then, from (3.27) it follows

1.1 R,
xi(T;p) = fim Xk:[¢> + 2[1 — cosg] (k; w)]]

1-—(1—w)?
x 11—
L[1-21 - w)cosy}(k;») + (1 —w)?|+1— (1-w)?
(3.28)

where the summation is only over the roots of equation (2.14). Having in mind the properties
of the rootsy} (k; w), it is easy to see that in the limit — oo this equation leads to

1
Xoo,00(T'; p) = ﬁwl(qﬁo) (3.29)

for any . We recall now that considering as a free parameter, at = 0 one has

the standard spherical model under the Neumann—Neumann boundary condition and at
o = 1 the corresponding one with Dirichlet—Dirichlet boundary conditions. The above
result shows that the behaviour @f, (T; p) does not actually depend on the boundary
conditions. From the temperature dependencegéround the bulk critical temperature

¢o ~ [87(K. — K)]? [17] and the expansion oi,(¢) for small values of the argument

[17],

Wi() = 3¢~ "2+ O(¢"?) (3.30)
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we obtainys - = 1. It is clear that the same will be true for any layer at a finite distance
from the middle of the system. The above result was derived in [10] for a spherical
model under Dirichlet-Dirichlet boundary conditions (see equation (82) in [10]). Here we
simply show that it does not depend on the boundary conditions if they are identical at both
the boundaries: just due to the symmetry the system models by itself an analogue of the
Neumann boundary at the middle layers.

4. Discussion

In this paper the surface critical behaviour of a modified three-dimensional mean spherical
model with a L-layer film geometry under Neumann—-Neumann boundary conditions is
considered. The standard spherical model is modified in the sense that in addition to the
usual bulk spherical constraint a second spherical field is included in the Hamiltonian to fix
the mean square value of the spins at the boundaries at somepvall® We are mainly
interested in the upper critical behaviour of the local susceptibilitiesand x; ; with / close
to the middle of the system. The surface susceptibjlity and the local susceptibility -
are evaluated exactly and the corresponding results are given by equations (3.3) and (3.29),
respectively.

It is shown that the behaviour of;1(T; p) depends crucially op. At p = 1 we
find that x; ; is finite at the bulk critical temperaturg, in contrast to the recently derived
value ;1 = 1 in the case of just one global spherical constraint. The resylt= 1 is
only recovered ifo = p. = 2— (12K.)~1, whereK. is the dimensionless critical coupling.
Whenp > p,., the local surface susceptibility; ; diverges exponentially a8 — 7., see
equation (3.25). The calculation of the mean square valuef the spins at the Neumann
boundary in the standard spherical model elucidates the appearance of the critical value of
p = pc: it turns out that at the bulk critical point. = p,, see equation (3.15), & = K.,
¢ = 0andL = oo. As itis expected, the behaviour of the local susceptibjify~ turns out
to be independent of the boundary conditions if they are the same at both boundaries. Just
due to the symmetry, the system models by itself an analogue of the Neumann boundary at
the middle layers which leads 1@, .. = 1 (see section 3.2 for details). By considering the
second spherical field as an independent free parameter, we rederive in a uniform way the
previously known critical properties of the local surface susceptibility. They follow directly
from equation (3.3) ab = 0, for Neumann—-Neumann (see (3.12)), ang 1, for Dirichlet—
Dirichlet boundary conditions. Fas # 0, 1 equation (3.3) gives the corresponding result for
the so-called ‘intermediate’ [15] boundary conditions. From these results one concludes that
x1.1 diverges atT = T, only under Neumann boundary conditions. Finally, an effective
Hamiltonian which leads to an exactly solvable model withh = 2, the value for the
n — oo limit of the corresponding @) model, is proposed. It is given by equation (2.1)
where one has to set= —87 K (K. — K), see (3.16).

We emphasize that the spherical model under nonperiodic boundary conditions is not in
the same surface universality class as the corresponding r®odel in the limitn — oo,
in contrast to the bulk universality classes. For examyje= 1 andA'jb = 2 for the Qoo)
model, butA? = 7 and A5 = 3 for the spherical model. The results presented above show
that the properties of the model are improved by introducing a second spherical constraint
in the sense that they are closer, in a certain way, to the corresponding ones fanihe O
n — oo, model. It seems clear that in order to obtain ‘correct’ surface critical properties,
one has to impose a separate spherical constraint on each layer parallel to the surface.
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