
Surface critical exponents for a three-dimensional modified spherical model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 5645

(http://iopscience.iop.org/0305-4470/30/16/009)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 5645–5656. Printed in the UK PII: S0305-4470(97)84114-5

Surface critical exponents for a three-dimensional modified
spherical model

D M Danchev, J G Brankov and M E Amin
Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., block 4, 1113
Sofia, Bulgaria

Received 13 May 1997

Abstract. A modified three-dimensional mean spherical model with aL-layer film geometry
under Neumann–Neumann boundary conditions is considered. Two spherical fields are present
in the model: a surface one fixes the mean square value of the spins at the boundaries at some
ρ > 0, and a bulk one imposes the standard spherical constraint (the mean square value of the
spins in the bulk equals 1). The surface susceptibilityχ1,1 has been evaluated exactly. Forρ = 1
we find thatχ1,1 is finite at the bulk critical temperatureTc, in contrast to the recently derived
value ofγ1,1 = 1 in the case of just one global spherical constraint. The resultγ1,1 = 1 is only
recovered ifρ = ρc = 2− (12Kc)−1, whereKc is the dimensionless critical coupling. When
ρ > ρc, χ1,1 diverges exponentially asT → T +c . An effective Hamiltonian is also proposed
which leads to an exactly solvable model withγ1,1 = 2, the value for then→∞ limit of the
corresponding O(n) model.

1. Introduction

Recently [1] (hereafter referred to as I) the finite-size scaling behaviour of a three-
dimensional system with a film geometryL×∞2 was investigated within the mean spherical
model with Neumann–Neumann and Neumann–Dirichlet boundary conditions and surface
fields h1 and h

L
acting at the boundaries. The obtained results imply the well known

exponent1o
1 = 1

2 for the ordinary surface phase transition at a Dirichlet boundary, and the
emergence of a new critical exponent1sb

1 = 3
2, characterizing the Neumann boundary (for

a general review on surface critical phenomena see, for example [2–4], and for finite-size
scaling [2, 5–7]). The conjecture has been made that the latter critical exponent corresponds
to the special (surface-bulk) phase transition within the model. The last is in consistence
with the general expectation for the finite-size scaling form of the free energy for this type
of phase transitions if one assumes that the crossover exponent8 = 0, as it is for three-
dimensional O(n) models [2]. It has also been derived that the critical exponent of the local
surface susceptibilityχ1,1 is γ sb

1,1 = 1. The same result is known to hold for the spherical
model with enhanced surface couplings under Dirichlet–Dirichlet boundary conditions [8].
Unfortunately, in the latter case the model quite unphysically predicts that the surface orders
for a sufficiently large enhancement at some temperature above the bulk critical one even for
d = 3. This is no more the case in the model improved by introducing a second spherical
constraint on the spins at the boundaries [9], since the only critical point that remains for
d 6 3 is the bulk one. Then ford = 3 the exponentγ o

1,1 = −1 corresponds to an ordinary
phase transition [2, 10]. In I the case of equal bulk and surface couplings was considered
and the question of if and how the surface behaviour of the system with Neumann–Neumann
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boundary conditions will change under additional spherical constraints on the spins at and
near the surfaces was left open. One of the aims of this paper is to contribute to clarifying
that point. To this end we consider the critical behaviour of the local surface susceptibility

χ1,1(T ; ρ) = lim
L→∞

[−L∂2fL(T , h1, hL; ρ)/∂h2
1]|h1=hL=0 (1.1)

in the case when the mean square value of the spins at the boundaries is fixed at some positive
numberρ by an additional spherical constraint. The model defined in this way will be called
the modified spherical model. In equation (1.1) and in the remainder,fL(T , h1, hL; ρ)
denotes the free-energy density (perkBT and per spin) of a three-dimensional hypercubic
lattice system with a film geometryL×∞2 at temperatureT . Neumann–Neumann boundary
conditions are imposed across the finite dimension of extentL. Surface fieldsh1 andh

L

are supposed to act at the surfaces bounding the system. Since we are interested in the
caseh1 = hL, only one additional constraint on the boundary spins is imposed. It turns out
that the behaviour ofχ1,1 in the vicinity of the bulk critical pointTc depends crucially on
ρ . It will be shown that only ifρ = ρc := 2− (12Kc)−1 = 1.340 53. . . one obtains the
previously found valueγ1,1 = γ sb

1,1 = 1. If ρ < ρc thenχ1,1 has the singularity characteristic
of the spherical model with Dirichlet boundary conditions, i.e.γ1,1 = γ o

1,1 = −1. When
ρ > ρc, χ1,1 diverges exponentially asT → T +c , which reminds us of the behaviour of a
two-dimensional O(n), n > 2, model close toT = 0. The calculation of the mean square
valueρs of the spins at a Neumann boundary in the standard spherical model elucidates the
appearance of the critical value ofρ = ρc: it turns out thatρc = ρs . Moreover, we note that
the second spherical field, to be denoted byv (see equation (2.1) below), can be considered
as a free parameter. It will be shown that by changing it one interpolates continuously
from Neumann, via mixed, to Dirichlet boundary conditions. Following I, under Neumann
boundary conditions we mean here the case when the interaction of the finite system with
the ‘environment’ is modelled by letting the spins surrounding the system take the same
values as their nearest neighbour inside the system. Under Dirichlet boundary conditions
this interaction is modelled by fixing the spin configuration outside the system to zero
value. (For a precise mathematical definition of the boundary conditions see I.) The mixed
boundary conditions then correspond to the situation when the spins surrounding the system
are set to take values proportional (but not equal) to those of their nearest neighbour inside
the system. Obviously, the above terminology is justified by analogy with the continuum
limit. Note that for anyv, just due to the symmetry which arises from the identical boundary
conditions and fields (h1 = hL) at the opposite surfaces, the system models by itself an
analogue of a Neumann boundary at the middle layers. Therefore, if one considers the local
surface succeptibilityχl,l for the lth layer, one would expect to obtain the critical exponent
for the Neumann boundary,γl,l = 1, for l around the middle of the system. The last is
obviously true even if the system is with otherwise Dirichlet boundary conditions. Finally,
it will be shown that ifv is a given function of the temperature, one obtainsγ sb

1,1 = 2, which
is the corresponding value for the O(n) model in the limitn→∞.

As is well known, the infinite translational-invariant spherical model is equivalent to the
n→∞ limit of a similar system ofn -component vectors [11, 12]. However, the spherical
model with surfaces (or, more generally, without translation-invariant symmetry) is in fact
not such a limit [13] (for the results available for the spherical model see, for example
[2, 5–7] and references therein). In other words, the spherical model under nonperiodic
boundary conditions is not in the same surface universality class as the corresponding O(n)

model in the limitn → ∞, in contrast to the bulk universality classes. The last becomes
apparent when one investigates surface phase transitions for an O(n) model in the limit
n→∞. In that case one obtains [2]11 = 1/(d − 2) (i.e. 11 = 1 for d = 3) for ordinary
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and11 = 2/(d − 2) (i.e. 11 = 2 for d = 3) for special phase transitions. It is believed
that the corresponding equivalence will be recovered if one imposes spherical constraints
in a way which ensures that the mean square value of each spin of the system is the same
[13] (unfortunately such a model is rather untractable). One of the aims of this paper is
to see if, and up to what extent, the behaviour of the system with two spherical fields will
be closer to the O(n) model in the limitn → ∞, in comparison with the standard mean
spherical model (with only one spherical field).

This paper is organized as follows. In section 2 we describe the model and present
convenient starting expressions for the mean spherical constraints, the free-energy density
and the local surface susceptibility. Our main results on the behaviour ofχ1,1 andχl,l as a
function onT andρ are given in section 3. The paper closes with a short discussion given
in section 4.

2. The model

We explicitly consider the three-dimensional mean spherical model with nearest-neighbour
ferromagnetic interactions on a simple cubic lattice. At each lattice siter = (r1, r2, r3) ∈ Z3

there is a random (spin) variableσ(r) ∈ R and the energy of a configurationσ
3
= {σ(r), r ∈

3} in a finite domain3 ⊂ Z3,3 = L1× L2× L3, containing|3| sites, is given by

βH(τ )
3
(σ

3
|K,h

3
; s) = −Kσ †

3
·Q(τ)

3
· σ

3
+ sσ †

3
· σ

3
+ vσ †s · σs − h†3 · σ3. (2.1)

Here the|3| × |3| interaction matrixQ(τ)
3

can be written as

Q(τ)

3
= (1(τ1)

1 + 2E1)× (1(τ2)

2 + 2E2)× (1(τ3)

3 + 2E3) (2.2)

where× denotes the outer product of the corresponding matrices,1
(τi)
i is theLi×Li discrete

Laplacian under boundary conditionsτi , andEi is theLi×Li unit matrix. In equation (2.1)
β = 1/kBT is the inverse temperature;K = βJ is the dimensionless coupling constant;
h
3
= {h(r), r ∈ 3}, with h(r) ∈ R, which is an external magnetic field; ands andv are

the spherical fields which are to be determined from the mean spherical constraints (see
below);σs = {σ(r), r ∈ S}, S = {(r1, r2, 1) ∪ (r1, r2, L3)}, r1 = 1, . . . , L1, r2 = 1, . . . , L2.

The free-energy density of the modified mean spherical model in a finite region3 is
given by the Legendre transformation

βf (τ)
3
(K, h

3
; ρ) := sup

s,v

{−|3|−1 lnZ(τ)
3
(K, h

3
; s, v)− s − ρv|S|/|3|} (2.3)

where|S| is the total number of spins at the boundariesS and

Z(τ)
3
(K, h

3
; s, v) =

∫
R|3|

exp[−βH(τ )
3
(σ

3
|K,h

3
; s, v)]

∏
r∈3

dσ(r) (2.4)

is the partition function. The supremum is attained at the solutions of the mean spherical
constraints

〈σ †
3
· σ

3
〉 = |3| (2.5)

and

〈σ †s · σs〉 = ρ|S| (2.6)

where〈· · ·〉 denotes expectation value with respect to the HamiltonianβH(τ )
3
(σ

3
|K,h

3
; s).

Let us denote by−2+ 2 cosϕτiLi (ki), ki = 1, . . . , Li, i = 1, 2, 3, the eigenvalues of the

matrix 1(τi)
i . Let us further suppose, say, periodic boundary conditions acrossL1 andL2
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and Neumann–Neumann boundary conditions acrossL3. Then, by direct evaluation of the
integrals in the partition function (2.4), after taking the limitL1, L2→∞ at a fixedL3 = L,
one obtains for the free energy

βf
(n)
L (K, h1, hL; ρ) =

1

2
log

K

π
− 6K

+ sup
φ,ω

{
1

L

1

8π2

∫ 2π

0
dθ1

∫ 2π

0
dθ2

L∑
k=1

log[φ + 2
2∑
i=1

(1− cosθi)]

+2[1− cosϕnL(k;ω)] −
1

4KL

L∑
k=1

∣∣∣h(n)L (k;ω)∣∣∣2
φ + 2[1− cosϕnL(k;ω)]

−K
(
φ + 2

L
ρω

)}
. (2.7)

Here−2+ 2 cosϕnL(k;ω), k = 1, . . . , L are the eigenvalues of the matrix

1
(n)
L (ω) = 1(n)

L − ω(δ1,1+ δL,L) (2.8)

and

h
(n)
L (k;ω) = h1u

n

L
(1, k;ω)+ hLun

L
(L, k;ω) (2.9)

where{un
L
(r, k;ω), r = 1, . . . , L}, k = 1, . . . , L are its eigenvectors; the superscriptn stays

there for Neumann–Neumann boundary conditions. In equations (2.7)–(2.9) the following
definitions have been used

φ = s/K − 6 (2.10)

ω = v/K. (2.11)

From the requirement for the existence of the partition function one has the constraint

φ + 2 min
k=1,...,L

[1− cosϕnL(k;ω)] > 0. (2.12)

The eigenvalues and the eigenvectors of the matrix1
(n)
L (ω) can be obtained in a way similar

to the one used in [9, 14]. The results are:
(i) for given L andω, when |1− ω| 6= 1, the numbersϕnL(k;ω), k = 1, . . . , L are the

L roots of the equations

1− ω = sin[1
2(L+ 1)ϕ]

sin[1
2(L− 1)ϕ]

(2.13)

and

1− ω = cos[12(L+ 1)ϕ]

cos[12(L− 1)ϕ]
(2.14)

with 0 < Re(ϕ) < π and Im(ϕ) > 0. For concreteness and simplification of the notations
below, without loss of generality in the final results, we assumeL to be an odd integer.
Then, it is easy to see that equation (2.13) possesses(L − 1)/2 solutions of the specified
type, whereas equation (2.14) gives the remaining(L + 1)/2 solutions. From (2.13) and
(2.14) one obtains that (for fixedL andk)

dϕ

dω
= 1

L

2 sinϕ

(1− ω)2− 2(1− ω) cosϕ + 1+ L−1[1− (1− ω)2]
. (2.15)

Further, if |1 − ω| < 1 all the L roots are real. In that case there is only one root of
equation (2.13) per interval(2πk/(L − 1), 2π(k + 1)/(L − 1)), k = 0, . . . , (L − 3)/2.
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Similarly, equation (2.14) only has one root per interval(π(2k − 1)/(L − 1), π(2k +
1)/(L − 1)), k = 1, . . . , (L − 3)/2, and one root in each of the intervals(0, π/(L − 1))
and (π − π/(L − 1), π). Let us now consider the case|1− ω| > 1. Then, ifω < 0, one
again only has one root of equation (2.13) per interval(2πk/(L− 1), 2π(k + 1)/(L− 1)),
k = 1, . . . , (L − 3)/2, and, similarly, one root of equation (2.14) per interval(π(2k −
1)/(L−1), π(2k+1)/(L−1)), k = 1, . . . , (L−3)/2, and one root in(π −π/(L−1), π),
i.e. altogetherL− 2 real roots in the interval(0, π). The two remaining roots are given by

ϕ0 = i log(1− ω)±O((1− ω)−(L−1)). (2.16)

(Strictly speaking the roots are only degenerate up to exponentially small corrections.) In
the caseω > 2 one again hasL− 2 real roots in the interval(0, π) and the remaining two
roots are then given byϕ0 = π + i log(ω − 1)±O((ω − 1)−(L−1)).

(ii) The components of the eigenvectors{un
L
(r, k;ω), r = 1, . . . , L}, k = 1, . . . , L of

the matrix1(n)
L (ω) are given by the expression (|1− ω| 6= 1)

un
L
(r, k;ω) =

√
2

L

sin[rϕnL(k;ω)] − (1− ω) sin[(r − 1)ϕnL(k;ω)]
{(1− ω)2− 2(1− ω) cosϕnL(k;ω)+ 1+ L−1[1− (1− ω)2]}1/2 .

(2.17)

(iii) For completeness we also give the results for the well known case|1− ω| = 1
(see, e.g, I, [14]). ThenϕnL(k; 0) = π(k − 1)/L, ϕnL(k; 2) = πk/L, k = 1, . . . , L, and the
components of the eigenvectors areun

L
(r, k; 0) = √(2− δk,1)/L cos[(r − 1/2)ϕnL(k; 0)] and

un
L
(r, k; 2) = √2/L sin[(r − 1

2)ϕ
n
L(k; 2)], respectively.

Finally, we remind ourselves that we are mainly interested in the behaviour of the local
surface susceptibility for which we obtain from equations (1.1) and (2.7)

χ1,1(T ; ρ) = 1

2K
lim
L→∞

L∑
k=1

|unL(1, k;ω)|2
φ + 2[1− cosϕnL(k;ω)]

. (2.18)

If, instead of the local susceptibility at the surface of the system, one is interested in the
local susceptibility of thelth layer,χl,l(T ; ρ), the corresponding result reads

χl,l(T ; ρ) = 1

2K
lim
L→∞

L∑
k=1

|unL(l, k;ω)|2
φ + 2[1− cosϕnL(k;ω)]

. (2.19)

The above expression can be obtained in a way analogous to the derivation ofχ1,1 by
imposing a local magnetic fieldhl on the spins in thelth layer.

To determine the behaviour of the spherical fieldsφ and ω one has to analyse
equations (2.5) and (2.6). From (2.3), (2.7 ), (2.10), (2.11) and (2.15) one explicitly obtains
the set of equations

2K = 1

4π2

∫ 2π

0
dθ1

∫ 2π

0
dθ2

1

L

L∑
k=1

{
φ + 2

2∑
i=1

(1− cosθi)+ 2[1− cosϕnL(k;ω)]
}−1

(2.20)

and

2Kρ = 1

4π2

∫ 2π

0
dθ1

∫ 2π

0
dθ2

1

L

L∑
k=1

2 sin2 ϕnL(k;ω)

×
{
φ + 2

2∑
i=1

(1− cosθi)+ 2[1− cosϕnL(k;ω)]
}−1

×{(1− ω)2− 2(1− ω) cosϕnL(k;ω)+ 1+ L−1[1− (1− ω)2]}−1. (2.21)
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These equations determine the point at which the finite-size free energy density (2.7), which
is an analytical and strictly concave function ofφ andω in the domain given by inequality
(2.12), reaches its global maximum. Clearly, in the thermodynamic limit the free-energy
density is independant of the surface spherical fieldω. As is well known, for allK > Kc
its supremum sticks to the endpointφ0 = 0 of the allowed intervalφ0 > 0, where the
bulk free-energy density is finite. WhenK < Kc, the supremum is attained at a point
φ0 = φ0(K) > 0, which satisfies the limit form of equation (2.20) [17],

2K = W3(φ0) (2.22)

where

Wd(φ) = 1

πd

∫ π

0
dθ1 · · ·

∫ π

0
dθd

[
φ + 2

d∑
i=1

(1− cosθi)

]−1

(2.23)

is thed-dimensional Watson integral,Wd(0) = 2Kc. In general, the solutionsφ andω of
equations (2.20) and (2.21) can be written in the formφ = φ0+1φ,ω = ω0+1ω, where
1φ and1ω tend to zero whenL→∞, andφ0 andω0 are solutions of the corresponding
equations where the limitL→∞ is taken.

Equations (2.16)–(2.23) provide the basis for our further analysis. Before passing to
it we note that, instead of consideringω as a variable that has to be determined from
equations (2.20) and (2.21), one can consider it as an additional free parameter. Then, from
equation (2.8) it is clear thatω = 0 yields the standard spherical model with Neumann–
Neumann boundary conditions, whereasω = 1 yields the same model under Dirichlet–
Dirichlet boundary conditions. When 0< ω < 1 we have mixed (or ‘intermediate’ [15])
boundary conditions which interpolate between the above two extreme cases. Therefore, in
this way one should reproduce the previously known results for the properties of the local
susceptibilities. In addition, as we shall later see, by choosingω to be a given function of the
temperature, one can define an effective spherical model withγ1,1 = 2, which corresponds
to the critical exponent for the surface-bulk phase transition within the O(n) model in the
limit n→∞.

3. Critical behaviour of the local susceptibilities

Here we study the critical behaviour of the local susceptibilitiesχ1,1 andχl,l for l close to
the middle of the system.

From equations (2.18) and (2.17) we obtain for the surface susceptibility

χ1,1(T ; ρ) = 1

K
lim
L→∞

1

L

L∑
k=1

sin2 ϕnL(k;ω)
φ + 2[1− cosϕnL(k;ω)]

×[1− 2(1− ω) cosϕnL(k;ω)+ (1− ω)2+ [1− (1− ω)2]/L]−1 (3.1)

where the limitL → ∞ in (3.1) is to be taken over the finite-size solutionsω andφ of
equations (2.20) and (2.21). If|1− ω| < 1, from the properties ofϕnL(k;ω), k = 1, . . . , L,
described in section 2, it follows that asL → ∞ the sum in equation (3.1) tends to the
corresponding well defined integral

χ1,1(T ; ρ) = 1

K

1

π

∫ π

0

sin2 ϕ

[φ0+ 2(1− cosϕ)][1 − 2(1− ω0) cosϕ + (1− ω0)2]
dϕ. (3.2)

The integral can be taken exactly [16] with the result

χ1,1(T ; ρ) = 1

K

1√
φ0(4+ φ0)+ φ0+ 2ω0

. (3.3)
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When |1 − ω| > 1 one has to take into account the contribution of the two complex
roots which turns out to be of the same order as the contribution of all other roots. The
contribution of the latterL−2 roots is again given by the integral on the right-hand side of
equation (3.2). Performing the calculations one obtains the same analytical expression for
χ1,1(T ; ρ) as the one given by equation (3.3).

The surface spherical fieldω0 satisfies the corresponding limit form of the spherical
constraint (2.21) at fixedφ0 = 0 for K > Kc, andφ0 = φ0(K) for K < Kc. The right-hand
side of this equation can be treated in a way similar to that for (3.1). When|1− ω| < 1,
due to the properties of the rootsϕnL(k;ω), k = 1, . . . , L, the sum in (2.21) converges as
L→∞ to the corresponding well defined integral, which can be taken exactly. Performing
this procedure, one finally obtains

2Kρ = G3(φ0, ω0) (3.4)

where

Gd(φ, ω) = 2

πd

∫ π

0
dθ1 · · ·

∫ π

0
dθd−1

{
φ + 2ω + 2

d−1∑
i=1

(1− cosθi)

+
[
φ + 2

d−1∑
i=1

(1− cosθi)

]1/2[
φ + 4+ 2

d−1∑
i=1

(1− cosθi)

]1/2}−1

. (3.5)

When|1−ω| > 1, one has to treat the contribution from the two complex roots separately.
The contribution from theL−2 real roots again leads to a well defined integral that can be
taken exactly. As forχ1,1(T ; ρ), the final result is given by the same analytical expression
as in the case|1−ω| < 1, i.e. equation (3.4) is actually valid for allω0 (the restrictions on
ω0 andφ0 stemming from the constraint (2.12) are stated below).

Let us denote byG+3 (φ, ω) the branch of the functionG3(φ, ω) defined forω > 0 and
by G−3 (φ, ω) the one forω < 0. Then, by means of identical transformations it is easy to
show that

G−3 (φ, ω) = (1− ω)−2G+3

(
φ,
|ω|

1− ω
)
− ω(2− ω)
(1− ω)2 W2

(
φ − ω2

1− ω
)

(3.6)

and

G+3 (φ, ω) = (1− ω)−1[2W3(φ)− 1
6 + 1

6φW3(φ)]

− ω

(1− ω)(2− ω)
2

π2

∫ π

0
dθ1

∫ π

0
dθ2

{
φ + 2

2∑
i=1

(1− cosθi)

+ ω

2− ω
[
φ + 2

2∑
i=1

(1− cosθi)

]1/2[
φ + 4+ 2

2∑
i=1

(1− cosθi)

]1/2}−1

.

(3.7)

Finally, in the limit L → ∞, constraint (2.12) for the existence of the partition function
yields the allowed domain of values of the spherical fields,

φ0 >
{

0 if ω0 > 0

ω2
0/ (1− ω0) if ω0 6 0.

(3.8)

From equation (3.3) it follows that the above inequalities implyχ1,1(T ; ρ) > 0, as it should
be expected on general physical grounds.

As it is evident from equation (3.5),G3(φ, ω) is a monotonically decreasing function
of ω which tends to zero from above asω→ +∞. Due to inequalities (3.8), atφ = 0 we
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have to consider it on the half-lineω > 0, where it is bounded from above by its value at
ω = 0, see equation (3.7),

G3(0, 0) = 4Kc − 1
6 := 2Kcρc. (3.9)

On the other hand, ifφ > 0, the definition domain ofG3(φ, ω) is restricted by (3.8) to the
half-line ω > ω1(φ), where

ω1(φ) = −(φ + φ2/4)1/2− φ/2. (3.10)

From representation (3.6) and the known expansion ofW2(x) asx ↓ 0,

W2(x) = (4π)−1 ln x−1+O(1) (3.11)

it follows thatG3(φ, ω) diverges logarithmically to+∞ asω ↓ ω1(φ).
Before passing to the analysis of the above equations, in order to determine the

behaviour ofχ1,1(T ; ρ), let us first consider the simpler case ofω as a free parameter.
Then, for Neumann–Neumann boundary conditions one has (see equations (2.2) and (2.8))
ω = 0, whereas one hasω = 1 for Dirichlet–Dirichlet boundary conditions. Thus, from
(3.3) and the well known behaviour ofφ0 in the vicinity of the bulk critical temperature
φ0 ' [8π(Kc − K)]2 [17], one immediately obtains all previously known results for the
critical behaviour of the local surface susceptibility [1, 10]:

(a) Neumann–Neumann boundary conditions (ω = 0; the result given below follows
directly from equation (3.5) in [1] forh1 = hL)

χ1,1(T ) = (2K)−1 {φ0/2+ [φ0(1+ φ0/4)]
1/2}−1 (3.12)

i.e. γ1,1 = 1.
(b) Dirichlet–Dirichlet boundary conditions (ω = 1; see equation (61) in [10])

χ1,1(T ) = (2K)−1{1+ φ0/2+ [φ0(1+ φ0/4)]
1/2}−1 (3.13)

i.e. γ1,1 = −1.
For ω 6= 0, 1 one has the case of the so-called intermediate [15] boundary conditions.

As it is clear from (3.3),χ1,1 diverges in the vicinity ofT = Tc if and only if ω = 0, i.e.
under Neumann–Neumann boundary conditions.

Let us now comment on the critical valueρc of the parameterρ, defined in equation (3.9).
By using a translation invariance argument, for the mean square length of the spins at the
Newmann boundary of the standard spherical model with one global spherical fieldφ one
obtains in zero magnetic field

〈σ 2(r1, r2, 1)〉 = 1

2KL1L2

×
L∑

k1,k2,k3=1

|unL(1, k3; 0)|2
φ + 2

∑2
i=1[1− cos(2πki/Li)] + 2[1− cos(π(k3− 1)/L3)]

.

(3.14)

In the limit of an infinite film geometry this equation yields (L3 = L is kept finite)

lim
L1,L2→∞

〈σ 2(r1, r2, 1)〉 = 1

K
[W3(φ)− 1

12 + φW3(φ)/12+W2(φ)/2L]. (3.15)

Hence, at the critical pointK = Kc of the infinite system (L = ∞), by taking into account
the bulk spherical constraint atφ0 = 0, namelyW3(0) = 2Kc, one obtains that the mean
square lengthρs of the spins at the Neumann boundary of the standard spherical model
equals precisely the critical valueρc for the surface spins in the modified spherical model.
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Finally, we note that by taking

ω = −8π(Kc −K) (3.16)

one obtains for the considered system with layer geometry and Neumann–Neumann
boundary conditionsγ1,1 = 2, which is the corresponding critical exponent for the O(n)

models in the limitn→∞. In that caseγ ′1,1 also exists, andγ ′1,1 = 1. Obviously, such a
choice ofω defines an effective Hamiltonian that leads to an exactly solvable model with
the critical exponents stated above.

Now we pass to the analysis of the behaviour ofχ1,1(T ; ρ) given by equation (3.3)
whereω0 is determined as a function ofK andρ from equation (3.4).

3.1. Critical behaviour of the local surface susceptibility

Here we confine our analysis to the surface critical regimes that emerge on approaching
the bulk critical temperature from above, i.e. whenK = Kc + 1K, where1K < 0 and
|1K| → 0. Then, as it is well known, the leading asymptotic form of the bulk spherical
field follows from the asymptotic expansion

W3(φ) = 2Kc − (4π)−1φ1/2+O(φ) φ ↓ 0 (3.17)

and reads [10]

φ = 64π2|1K|2 1K ↑ 0. (3.18)

From expression (3.3) it is clear that the local surface susceptibility may exhibit divergent
behaviour in two different regimes: (a) whenω0 ↓ 0, and (b) whenω0 ↓ ω1(φ) ↑ 0. As it is
clear from equation (3.4) and the above-mentioned properties of the functionG3(φ, ω), the
first regime may only occur whenKρ ↑ Kcρc, which, in view of our assumption1K ↑ 0,
requiresρ = ρc. The second divergent regime of the local surface susceptibility takes place
at any fixedρ > ρc. Below we derive the leading-order asymptotic solutions forω0 in each
of the two cases.

Case (a):ρ = ρc. To obtain an asymptotic expansion ofG3(φ, ω) in both argumentsφ ↓ 0
andω ↓ 0, we notice that the integral on the right-hand side of equation (3.7) diverges at
φ = ω = 0 and the divergence arises from the integration over the neighbourhood of the
point θ1 = θ2 = 0. Therefore, its leading-order asymptotic behaviour is given by the small
argument expansion of the trigonometric functions which yields

G+3 (φ, ω) = 2Kcρc − (2π)−1φ1/2+ (ω/2π) ln(φ1/2+ ω)+O(φ)+O(ω). (3.19)

By settingρ = ρc, we obtain thatω0 ↓ 0 obeys the asymptotic equation (1K ↑ 0)

−(ω0/2π) ln(8π |1K| + ω0) = |1K|/(6Kc). (3.20)

The solution which tends to zero from above as|1K| → 0 is

ω0 ' − π |1K|
3Kc ln(8π |1K|) . (3.21)

Obviously, this critical regime leads toγ1,1 = 1.

Case (b): ρ > ρc. The asymptotic behaviour ofG3(φ, ω) as φ ↓ 0 andω ↑ 0, so that
ω > ω1(φ), is readily obtained from the exact representation (3.6) and expansions (3.11)
and (3.19):

G−3 (φ, ω) = 2Kcρc − (2π)−1φ1/2− (|ω|/2π) ln(φ1/2− |ω|)+O(φ)+O(ω). (3.22)



5654 D M Danchev et al

At fixed 1ρ > 0 the leading-order equation for the surface spherical field becomes

−(|ω0|/2π) ln(8π |1K| − |ω0|) = 2Kc1ρ. (3.23)

Assuming|ω0| = 8π |1K| − x, wherex = o(|1K|), one obtains

ω0 ' −8π |1K| + exp

(
− Kc1ρ

2|1K|
)
. (3.24)

Therefore, in this critical regime the local surface susceptibility diverges exponentially as
the bulk critical temperature is approached from above:

χ1,1(T ; ρ) ' 1

2K
exp

(
Kc1ρ

2|1K|
)
. (3.25)

This behaviour reminds us of the one of a two-dimensional system close toT = 0. The
fact that the surface is coupled to an infinite three-dimensional system is reflected in the
replacement ofT = 0 by the bulk critical temperatureT = Tc.

Finally, if ρ < ρc it is easy to see that (3.4) has a finite solutionω0(ρ,K), where
0< ω0 < 1, when1K ↑ 0. The last actually follows from the inequalities

G3(0, φ) > W3(φ) > G3(1, φ). (3.26)

Thus, if ρ = 1 the local surface susceptibility,χ1,1(Tc; 1) is finite.

3.2. Critical behaviour of the local susceptibility around the middle of the system

For the local susceptibilityχl,l(T ; ρ) from (2.17) and ( 2.19) one explicitly obtains

χl,l(T ; ρ) = 1

K
lim
L→∞

1

L

L∑
k=1

{sin[lϕnL(k;ω)] − (1− ω) sin[(l − 1)ϕnL(k;ω)]}2
φ + 2[1− cosϕnL(k;ω)]

×{1− 2(1− ω) cosϕnL(k;ω)+ (1− ω)2+ [1− (1− ω)2]/L}−1. (3.27)

We will only be interested in the behaviour of this quantity around the middle of the system.
Let us setl = (L+ 1)/2. Then, from (3.27) it follows

χl,l(T ; ρ) = 1

K
lim
L→∞

1

L

∑
k

[φ + 2[1− cosϕnL(k;ω)]]−1

×
{

1− 1− (1− ω)2
L
[
1− 2(1− ω) cosϕnL(k;ω)+ (1− ω)2

]+ 1− (1− ω)2
}

(3.28)

where the summation is only over the roots of equation (2.14). Having in mind the properties
of the rootsϕnL(k;ω), it is easy to see that in the limitL→∞ this equation leads to

χ∞,∞(T ; ρ) = 1

2K
W1(φ0) (3.29)

for any ω. We recall now that consideringω as a free parameter, atω = 0 one has
the standard spherical model under the Neumann–Neumann boundary condition and at
ω = 1 the corresponding one with Dirichlet–Dirichlet boundary conditions. The above
result shows that the behaviour ofχ∞,∞(T ; ρ) does not actually depend on the boundary
conditions. From the temperature dependence ofφ0 around the bulk critical temperature
φ0 ' [8π(Kc − K)]2 [17] and the expansion ofW1(φ) for small values of the argument
[17],

W1(φ) = 1
2φ
−1/2+O(φ1/2) (3.30)
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we obtainγ∞,∞ = 1. It is clear that the same will be true for any layer at a finite distance
from the middle of the system. The above result was derived in [10] for a spherical
model under Dirichlet–Dirichlet boundary conditions (see equation (82) in [10]). Here we
simply show that it does not depend on the boundary conditions if they are identical at both
the boundaries: just due to the symmetry the system models by itself an analogue of the
Neumann boundary at the middle layers.

4. Discussion

In this paper the surface critical behaviour of a modified three-dimensional mean spherical
model with aL-layer film geometry under Neumann–Neumann boundary conditions is
considered. The standard spherical model is modified in the sense that in addition to the
usual bulk spherical constraint a second spherical field is included in the Hamiltonian to fix
the mean square value of the spins at the boundaries at some valueρ > 0. We are mainly
interested in the upper critical behaviour of the local susceptibilitiesχ1,1 andχl,l with l close
to the middle of the system. The surface susceptibilityχ1,1 and the local susceptibilityχ∞,∞
are evaluated exactly and the corresponding results are given by equations (3.3) and (3.29),
respectively.

It is shown that the behaviour ofχ1,1(T ; ρ) depends crucially onρ. At ρ = 1 we
find thatχ1,1 is finite at the bulk critical temperatureTc, in contrast to the recently derived
value γ1,1 = 1 in the case of just one global spherical constraint. The resultγ1,1 = 1 is
only recovered ifρ = ρc = 2− (12Kc)−1, whereKc is the dimensionless critical coupling.
Whenρ > ρc, the local surface susceptibilityχ1,1 diverges exponentially asT → T +c , see
equation (3.25). The calculation of the mean square valueρs of the spins at the Neumann
boundary in the standard spherical model elucidates the appearance of the critical value of
ρ = ρc: it turns out that at the bulk critical pointρc = ρs , see equation (3.15), atK = Kc,
φ = 0 andL = ∞. As it is expected, the behaviour of the local susceptibilityχ∞,∞ turns out
to be independent of the boundary conditions if they are the same at both boundaries. Just
due to the symmetry, the system models by itself an analogue of the Neumann boundary at
the middle layers which leads toγ∞,∞ = 1 (see section 3.2 for details). By considering the
second spherical field as an independent free parameter, we rederive in a uniform way the
previously known critical properties of the local surface susceptibility. They follow directly
from equation (3.3) atω = 0, for Neumann–Neumann (see (3.12)), andω = 1, for Dirichlet–
Dirichlet boundary conditions. Forω 6= 0, 1 equation (3.3) gives the corresponding result for
the so-called ‘intermediate’ [15] boundary conditions. From these results one concludes that
χ1,1 diverges atT = Tc only under Neumann boundary conditions. Finally, an effective
Hamiltonian which leads to an exactly solvable model withγ1,1 = 2, the value for the
n→∞ limit of the corresponding O(n) model, is proposed. It is given by equation (2.1)
where one has to setv = −8πK(Kc −K), see (3.16).

We emphasize that the spherical model under nonperiodic boundary conditions is not in
the same surface universality class as the corresponding O(n) model in the limitn→∞,
in contrast to the bulk universality classes. For example1o

1 = 1 and1sb
1 = 2 for the O(∞)

model, but1o
1 = 1

2 and1sb
1 = 3

2 for the spherical model. The results presented above show
that the properties of the model are improved by introducing a second spherical constraint
in the sense that they are closer, in a certain way, to the corresponding ones for the O(n),
n→ ∞, model. It seems clear that in order to obtain ‘correct’ surface critical properties,
one has to impose a separate spherical constraint on each layer parallel to the surface.
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